Communicated 15 September 1949 by ARNE WESTGREN and ARNE TISELIUS

Mixed bismuth oxides with layer lattices

I. The structure type of CaNb₂Bi₂O₉

By BENGT AURIVILLIUS

With 5 figures in the text

In the course of a comprehensive investigation of mixed bismuth oxides, the system $\mathrm{Bi_2O_3}-\mathrm{TiO_2}$ was studied. At about 40 atomic % of $\mathrm{TiO_2}$ a phase with a body-centered pseudo-tetragonal unit cell with a=3.84 and c=32.8 Å was found. X-ray analysis (to be published later) seemed to show that the structure was built up of $\mathrm{Bi_2O_2^{2+}}$ layers paralell to the basal plane, and sheets of composition $\mathrm{Bi_2Ti_3O_{10}^{2-}}$. The atomic arrangement within the $\mathrm{Bi_2Ti_3O_{10}^{2-}}$ sheets seemed to be the same as in structures of the perowskite type and the structure could then be described as consisting of $\mathrm{Bi_2O_2^{2+}}$ layers between which double perowskite layers are inserted.

An attempt was then made to synthesize compounds where the Bi₂O₂²⁺ layers alternate with single perowskite layers. The general formula for such compounds could be expected to be: (MeBi)₆R₄O₁₈. In actual fact compounds with this structure could be prepared with Me: Na K Ca Ba Sr Pb R: Ti Nb Ta.

Procedure: Weighed amounts of the appropriate oxides or carbonates were mixed and heated in platinum or gold crucibles to about 1000° C. A number of compounds with the general formula (Bi, Me)₆R₄O₁₈ were prepared. Out of these the following were found to have a body-centered tetragonal or pseudo-tetragonal unit cell. The real unit cells, however, appeared to be face-centered-orthorhombic.

	Orthor	hombic descrip	otion	Pseudo-tetragonal description	
Composition	a	ь		а	С
Gi ₅ NbTiO ₉	5.405 5.402 5.435 5.504 5.509 5.533 5.492 5.506 5.47	5.442 5.436 6.485 5.504 5.509 5.533 5.503 5.506 5.47	25.11 25.15 24.87 25.05 25.06 25.55 25.53 25.26 26.94	3.836 3.832 3.860 3.892 3.895 3.912 3.887 3.893 3.87	25.11 25.15 24.87 25.05 25.06 25.55 25.53 25.20 26.94

Single crystals were prepared from the PbBi2Nb2O9 and Bi3NbTiO9 phases. Weissenberg photographs of 0kl and 1kl (pseudo-tetragonal cell) were taken. In the powder photographs of Bi₃NbTiO₉ (Table 6a) the reflections 110, 211; 215, 220 and 310 were clearly split up. No cleavage was found for the reflections 10l, 20l, and 30l, (in all cases pseudo-tetragonal indices). From this it was concluded that the structure might be described by means of orthorhombic unit cells, having the same c axes as the pseudo-tetragonal cells, and a and b axes equal to the diagonals of the pseudo-tetragonal cells. Using orthorhombic units the Weissenberg photographs register hhl and h, h+2, lIn Table 6 a the sin \$\text{0}\$ of Bi3NbTiO9 are calculated on the assumption of an orthorhombic unit cell.

A few discrepancies occur between the intensities of the spots as found in the Weissenberg photographs (first layer) and in the powder photographs. In the Weissenberg photographs (h, h+2, l), no difference was found between reflections hkl and khl. From the powder photographs it is seen that 024 might be < 204 and that 311 < 131 and 3111 < 1311. The reason might be the orientation of the powder.

PbBi₂Nb₂O₉ phase

The powder photographs of PbBi₂Nb₂O₃ (Table 6b) could be explained as suming a tetragonal cell with a=3.887 Å and c=25.53 Å, but for two lines being split up, which indicated an orthorhombic unit cell with axes a = 5.492b=5.503 and c=25.53 Å. As in Bi₃NbTiO₉, it was thus assumed that the real symmetry is $D_{2h}-mmm$, though nothing in the Weissenberg photographs indicated a lower Laue symmetry than $D_{2h}-4/mmm$. The observed density was 7.91, thus allowing 4 formula units/unit cell ($d_{calc.} = 8.22$).

With the exception of the criterion for face-centering that hkl occuring only with h, k, l all odd or all even, no systematic extinctions were found. This is characteristic of the space groups D₂₂, D₂ and C₂₂.

Positions of the metal atoms

As the scattering factors for the Pb and the Bi atoms are almost the same, it makes no difference in the intensity calculations whether the Pb and the Bi atoms occupy separate positions or are mixed at random. Therefore no difference will be made between Pb and Bi; they will both be denoted by Me.

The intensities of the reflections seemed to depend mainly on the value of l (see Table 1a). It therefore seemed probable that at least the Me and the Nb atoms are placed along the lines: $(000; \frac{1}{2}, \frac{1}{2}, 0; \frac{1$ $\sum_{i} I_{00i} \cos 2\pi lz$ and $\sum_{i} I_{11i} \cos 2\pi lz$ will under such conditions represent the

Patterson function along 00z. In Fig. 1a these sums are plotted as functions of z. It is seen from the graph that high maxima occur for z = 0.20 and

z = 0.40. The unit cell of PbBi₂Nb₂O₃ contains 12 Me atoms and 8 Nb atoms.

If the space groups are assumed to be D_{2h}^{23} , D_2^7 or C_{2v}^{18} a or b, the only way of placing 12 Me atoms on the lines 00z is in one 4-fold and one 8-fold position. With these assumptions the only 4-fold positions possible are 000 or 001

The crysts in the vicinit of maximum tetragonal ind 101, 111, 2(have been der

z
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
ı
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Table 1 a

Weissenberg Photographs of PbBi₂Nb₂O₅. Cu K_a radiation

The crystals form very thin plates, and therefore considerable absorption occurs. Spots in the vicinity of the lines described by Wells (2) will therefore be weakened. The regions of maximum absorption are denoted by dotted lines. In the tables 1, 2 and 3 pseudotetragonal indices are used, and observed and calculated intensities for the reflections: 001, 101, 111, 201, and 211 are given. With orthorhombic description these reflections would have been denoted by: 001, 021 or 201, 221, 131 or 311.

ı	I ₁	I ₂	Iooz	I _{obs.} I ₁₁₁	1201
. 2	30	10			
	18	1.2	_	vw	VW
4 6	9.0 0.1	· 34 8.4		m	W
8	25	8.4 14	vvw_	m·	₩_
10	350	3 4 0	m	w	
12	19		vst	m+	m
14	36	0.2	! w.	•	
16	9.6	100	m+	vvw	₩_
18	45	4.8 31	VW		_
20	280	230	m -4	w	w.
22	22	0.04	st	m+	\mathbf{m}^{+}
24	71	200			 .
26	27	200 14	m+	m	m+
28	85	26	w	VVW	VW
. 30	190	130	m	w	W
32	25	8.4	m.	m	
- 1	20	0.9	₩ .		·····
. 1	_	_	_	I _{obs.}	
2	I ₁	I ₂	I_{10l}	-I ₂₁ ;	
				211	
1	1.7	17			
3 1	20	6.3	m_ m	vvw :	
3 5	380	370	vet	st .	
7	18	0.0	V 80		
9	12	63	m	. w :	
11	3.2	5.3			
		:			
13	32	23	. w	.vvw	,
15 17	320	280	st	w	
19	20	0.2	- .	·,	
21	55	160	m+	₩+	
23	18	7.8	VVW		
25	61 230	32	· m	₩+	
27	24	170 1.7	m+	m	
29	85	250		,	
31	48	23	m+ ₩		

ind in in in reflecting might ght be

hases.

taken. 211,

or the

From ans of l cells,

Using +2, l. of an

o lines = 5.492 Lat the egraphs ity was

ng only This is

e same, and the fore no by Me. lue of l the Nb sum of sent the

nly way

inctions 20 and

Table 1b .
Weissenberg Photographs of PbBi₂Nb₂O₉

Zero layer			First layer					
100	I ₁	I _{obs.}	I' ₂	211	I' ₁	I _{obs.}	I' ₂	
			32	1	1.7	_	14	
4	11	m	1.4	3	18	vvw	4.8	
в	1.4	₩_	14	5	330	at	340	
8	28	m m	360	5 7	18		0.4	
10	360	vst	11	9	23	w	67	
12	45	w m+	88	11	4.8		3.6	
14	50		5.8	13	26	VVW	23	
16	6.3	VW	38	15	300	w	280	
18	70	,m.	230		13		0.3	
20	280	st	250 0.4	17	42	w+	150	
22 .	25	m+		19	14		7.8	
24	58		250 10	21	66	₩+	36	
26	21	₩		23		1	170	
28	85	m	21	25	210	m	2.9	
30	240	m	120	. 27	23		2.8	
32	17	W	6.8	il b	<u> </u>	1	 	
101	I' ₁	I _{obs.}	I'2	113	I' ₁	I _{obs.}	I'2	
1.	1.0	m.	8.4	2	18	vw	1.2 34	
	14	m_	4.0	4	9.0	m	8.4	
3 5 7	320	vst	340	6	0.1	m		
7	16	_	0.5	8	25	w	14	
9	24	m	67	10	350 ·	m+	340	
	6.3		2.0	12	19	_	0.2	
11	24	w	24	14 .	36	VVW	100	
13	310	st	280	16	9.6		4.8	
15	13		0.5	18	45	w	31	
17	42	m+ .	150	20	280	m+	230	
19	14	VVW	7.8	22	22	-	0.0	
21	64	m	38	24	71	, m.	200	
23	210	im	170	26	27	VVW	14	
25	23	1	2.9	28	85	w	26	
27	81	m+	220	30	190	m	130	
29	32	w	24		Ì	;	1	
31				-[i	•	
201	I'i	I _{obs} .	I'2	4				
2	12	∇₩	1.4	ŀ				
4	10	w	36					
6	0.5	! —	4.8	5i 1:				
8	31	w	14	li .				
10	350	m	350	1				
12	41	_	7.8	þ				
12	50	₩~	88	į:				
	6.3		6.3		•			
16		w	40	Į.				
18	69	m+	230	h				
.20	280	m.	0.4	1				
22	25	m+	240	Į.				
24	59		11	li .				
26 28	20	w w	21	li .				
.,,	85	ι ₩	1 24	E.				

Fi

 \mathbf{D}

Of It · Usi sibiliti

The 0.20 s In the ridirecticourse actual areas alone.

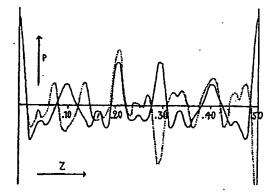


Figure 1a. Patterson function of Pbv2Bi2Nb2O9 along 00z

Full curve: $\sum_{l} I_{00l} \cos 2\pi lz$

14 4.8 340 0.4 67 3.6 23

280 (0.3

150 7.8

36 170 2.9

 $\mathbf{I_2'}$

200 14 26

130

1.2 34 8.4 14 340 0.2 100 4.8 31 230 0.0 Dotted curve: $\sum_{i} I_{11i} \cos 2\pi iz$ (orthorhombic indices).

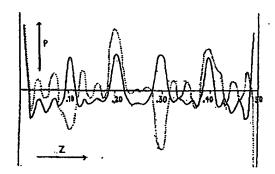


Figure 1b. Patterson function of BiaNbTiO, along 002

Of 8-fold positions only $\pm 00z$ is possible.

It was assumed arbitrarily that 4 Me occupy the position 000.

Using the distances found with the aid of the Patterson function, two possibilities for placing the Nb atoms arose:

1. 8 Nb in \pm 00 0.20 4 Me in 000 8 Me in \pm 00 0.40 2. 8 Nb in \pm 00 0.40 4 Me in 000 8 Me in \pm 00 0.20

The two curves on the graph were added and the areas under the peaks at 0.20 and 0.40 calculated. The ratio 1.5:1 was found for 0.20/0.40.

In case 1, the ratio was calculated to be 0.91:1 and in case 2, 1.1:1 if the ratio $f_{\rm Nb}/f_{\rm Bl}$ was assumed to be 0.46. These figures cannot be compared directly with the observed ratio 1.5:1 since the zero level in figure 1 is of course uncertain. Case 2 agrees slightly better insofar as the peak at 0.20 is actually higher. It seemed, however, that the uncertainty in determining the areas was so large that case 1 could not be excluded by these measurements alone.

Case 1

In calculating the structure amplitudes z_{Nb} was varied around 0.20 and z_{Mb} around 0.40. The average ratio f_{Nb}/f_{Me} was assumed to be 0.46. The intensities were compared with calculated values of A2:

 $A = 10 (\cos 2\pi l z_{Me} + 0.46 \cos 2\pi l z_{Nb} + 0.5) = 10 F/4 f_{Me}$. In this way the

best values for the parameters were found to be:

 $z_{\rm Me}=0.397\pm0.002$ and $z_{\rm Nb}=0.192\pm0.004$. In Table 1a $I_{\rm calo}$ is compared with the observed intensities.

Case 2

z_{ND} was varied about 0.40 and z_{Mo} around 0.20. The best values were found to be $z_{Nb} = 0.412 \pm 0.004$ and $z_{Me} = 0.202 \pm 0.002$.

The observed and calculated values are compared in Table 1a.

It was found that arrangement 2 accounted slightly better for the experimental data than 1. It must, however, be borne in mind that the intensity ratios of weak spots might be changed through the influence of the oxygen atoms and that this influence was neglected in the calculations. The differences did not seem to be as large as to allow a decision between 1 and 2. It was therefore tried to find possible oxygen positions both for 1 and 2. The results were then compared.

Case 1. Positions of the oxygen atoms

The positions of the metal atoms were assumed to be: $(000; 0\frac{1}{2}, \frac{1}{2}, 0\frac{1}{2};$ $\frac{1}{2}\frac{1}{8}0$ + 000 (4 Me₁) \pm 00 0.397 (8 Me₂) \pm 00 0.192 (8 Nb). Since all point positions of D_{2h}^{2a} can be described by positions of D_2^7 or C_{2h}^{18} a, only D_2^7 and C_{2h}^{18} a have been considered.

At first only D₂ will be discussed. If the interatomic distances 0-0, Me-0 and Nb-O should not be smaller than 2.5, 2.2 and 1.8 Å. oxygen atoms could

only be situated in the following positions:

An attempt was made to find positions for the oxygen atoms giving a pproximately regular octahedra around Nb, since from known structures containing Nb⁵⁺ and O^{2-} this seemed to be the normal configuration Nb⁵⁺ - O^{2-} . The maximum distance of contact Nb-O was assumed to be 2.5 Å.

With these assumptions 8(g) and 8(h) are the only positions where oxygen

atoms in contact with Nb can be situated.

With oxygen_atoms in three 8-fold positions 8(h) the distances 0-0 would be too short. It then only remains to consider the case of oxygen atoms in two 8-fold positions 8(g) and two 8 fold positions 8(h). For the oxygen

468

8 вĊ

or

th€ atc y = the or

wit 0-

are fro] anc Th٠ 1 +

 θ/λ

+ (

atoms in contact with Nb, reasonable interatomic distances were obtained assuming: 8 O_2 in 8(g) $z_2 = 0.100$ 8 O_3 in 8(g) $z_3 = 0.264$ 8 O_4 in 8(h) $z_4 = 0.168$ 8 O_5 in 8(h) $z_5 = -0.168$. Even if small adjustments of these parameters are admitted for the remaining 4 O there is room only in the position 00½ (O1). With these assumptions the distances would be:

It is seen that the positions given might equally well be described by D22 or if the pseudo-tetragonal unit cell (a=3.89 c=25.53 Å) is chosen by D_{4h}^{17} .

As $a \sim b$ and the positions of the oxygen atoms must be chosen from space considerations, the discussion will be the same for $C_{2\nu a}^{18}$ as for $C_{2\nu b}^{18}$. For $C_{2\nu a}^{18}$ it is found that the oxygen atoms can be only in the planes y=0 $y=0.25\pm0.03$ $y=\frac{1}{2}$ and $y=0.75\pm0.03$. For y=0 or $\frac{1}{2}$, z must either be 0 or $\frac{1}{2}$ or lie between the limits 0.049<|z|<0.451, otherwise the distance O-O will be < 2.5 Å. For $y = \frac{1}{4}$ or $\frac{3}{4}$, z must have the values $0, \frac{1}{2}, \frac{1}{4}$ or $\frac{3}{4}$ 0.299 < |z| < 0.451.0.049 < |z| < 0.201or lie between the limits

In figure 2a sections of the unit cell are made for y=0 and $y=\frac{1}{4}$. Possible regions with space group $C_{20.6}^{18}$ are denoted in the figure by shaded areas. For these areas the distances $0-0 \ge 2.5$. Me $-0 \ge 2.2$ and Nb $-0 \ge 1.8$ Å.

With space group C20 it thus seems that no basically new atomic positions are obtained, although this symmetry allows the atoms to be slightly shifted from the positions of D_2^7 .

In Table 1 the intensities have been calculated from the parameters found and compared with the observed ones. (The calc. intensities are denoted by I'1). The mode of calculation is shown by the calculation of I_{001} . $I = A^2$.

A = 10 (0.5 + cos 2 $\pi l z_{Me}$ + (f_{Nb}/f_{Me}) cos 2 $\pi l z_{Nb}$ + (f_0/f_{Me}) (0.5 + cos 2 $\pi l z_2$ + + cos 2 $\pi l z_3$ + 2 cos 2 $\pi l z_4$). Since the ratios f_{Nb}/f_{Me} and f_0/f_{Me} vary with sin θ/λ they were interpolated from values given in the International Tables (1).

Case 2. Positions of the oxygen atoms

The positions of the metal atoms were assumed to be: $(000; \frac{1}{2}, \frac{1}{2}, 0; 0, \frac{1}{2}, \frac{1}{2}, 0, \frac{1}{2}) +$ $+ 000 (4 Me_1) \pm 00 0.202 (8 Me_2) \pm 00 0.412 (8 Nb).$ With D_2^7 the following positions are available for the oxygen atoms 4(b) 00 $\frac{1}{2}$

$$8 (g) \pm 00z
0.086 \le z \le 0.116
0.288 \le z \le 0.342$$

$$4 (c) \pm \pm 1$$

$$4 (d) \pm \pm 2, \pm \pm 1 = -z
0.039 \le |z| \le 0.161$$

$$16 (k) xyz, \bar{x}\bar{y}z, x\bar{y}\bar{z}, \bar{x}y\bar{z}
x = 0 x = 0.25 \pm 0.03
y = 0.25 \pm 03 \text{ or } y = 0
z \sim 0.135.$$

1.20 and $z_{\rm Me}$ ne intensities

this way the

is compared

s were found

the experithe intensity the oxygen 1e differences d 2. It was The results

; 0 ½ ½; ½ 0 ½; ace all point D₂ and C₂₀ a

O-0, Me-0 . atoms could

€ 0.122 ≤ 0.311

s giving a pwn structures $1 \text{ Nb}^{5+} - 0^{2-}$ Ă. where oxygen

O-O would xygen atoms r the oxygen

y• ‡

y- #

ΧÎ 2

y_0

¥= 0

Figure 2 a (see Case 1 in the text.)

The projection of the positions of the Nb, Me₁ and Me₂ atoms on the planes y=0 and y = 1 are denoted by: black circles, white circles and double circles respectively.

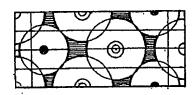


Figure 2 b (see Case 2 in the text.)

It was found that oxygen atoms in the positions 4(c), 4(d) or 16(k) could not be part of an octahedron around Nb. With O in the remaining positions 4(b), 8(g) and 8(h), octahedra around Nb might be achieved in the following ways: $(1.8 \le \text{Nb-0} \le 2.5)$.

With oxygen atoms in three 8-fold positions 8(h), it seemed impossible to find positions for the remaining 12 oxygen atoms giving 0-0 distances ≤ 2.5 Å.

With two 8-fold positions 8(h) + 4(b) + one 8-fold position 8(g) the following positions were assumed for oxygen atoms in contact with Nb:

For the remaining 8 oxygen atoms there was only room in the positions 4 (c) and 4(d). (O_5, O_6) .

With the above assumptions the distances would be:

The above positions might be equally well described by D23 or if a pseudotetragonal unit cell is assumed (a = 3.89 c = 25.53) by D_{th}^{th} .

🖰 In Figure 2 tions possible are denoted b positions give O-O be attair

Thus no: In Table The calcula same as we in which car well for the I' and I'2, v Although tl described by (see for inst 107:109). 1 PbBi₂NbO₉

Just as f to indicate graphs (Tab with axes (

The inter the metal a (Fig. 1b) s are made as

- A. 4 Nb 8 Bi'.

 - 8 Bil C_2

The areas and the ra C_1 and C_2 the observe were consid Tilteind, tnd, calculated & these calcul agreement '

In Figure 2b sections are made of the unit cell for y = 0 and $y = \frac{1}{4}$ showing the positions possible for the oxygen atoms if the space group $C_{20\,a}^{16}$ is assumed. Possible regions have denoted by shaded areas. It was found that only with oxygen atoms situated near the positions given above, could octahedra of 0 around all Nb atoms and reasonable distances in 0 be attained.

Thus no new arrangements were found when space group $C_{2^{\circ}a}^{18}$ was assumed. In Table 1 the intensities are calculated from the parameters given above. The calculated intensities are denoted by I_2 . The mode of calculation is the same as was used in case 1. It is seen from the Table that both 1 and 2, which cases the influence of the oxygen atoms was neglected, account fairly well for the experimental data. From this follows that the calculated intensities I_1 and I_2 , where regard was taken to the O atoms, do not differ much either. Although the ratio 211:213 (see Table 1 (pseudo-tetragonal indices)) is best described by I', I' on the whole seemed to satisfy the observed intensities best (see for instance the intensity ratios $I_1:114:116:118:202:204:101:103$ and $I_1:109$). No definite conclusions could however be drawn from the study of PbBi₂NbO₉ alone.

Bi₃NbTiO₉

Just as for PbBi₂Nb₂O₉, there was nothing in the Weissenberg photographs to indicate a lower Laue symmetry than D_{4h} —4/mmm. From the powder photographs (Table 6a) it is however seen that the actual unit cell is orthorhombic with axes a = 5.405 b = 5.442 c = 25.11 Å.

The intensities of the spots in the Weissenberg photographs indicate that the metal atoms are probably placed on the lines 00z. The Patterson function (Fig. 1b) showed high maxima at 0.20 and 0.40. If the same assumptions are made as for PbBi₂Nb₂O₉ the following arrangements seemed to be possible:

A. 4 Nb in 000 B. 4 Ti in 000
$$C_1$$
 4 Bi in 000 8 BiTi in \pm 00 z_1 8 BiNb in \pm 00 z_1 8 RbTi in \pm 00 z_2 8 BiNb in \pm 00 z_2 8 Bi in \pm 00 z_2 8 Bi in \pm 00 z_2 8 Bi in \pm 00 z_2 2 $z_1 \sim 0.20$ $z_2 \sim 0.40$ 8 Bi in \pm 00 z_1

The areas under the peaks at 0.20 and 0.40 were calculated as for PbBi₂Nb₂O₉ and the ratio 0.20/0.40 was found to be 1.4. The calculated ratios for A, B, C₁ and C₂ were 1.0, 1.0, 0.84 and 1.2. The area ratio for C₂ agreed best with the observed one. The differences are however small, so that all alternatives were considered. The intensities were calculated as for PbBi₂Nb₂O₉. The ratios \(\frac{1}{2} \fra

	z_1	z_2
A	$0.19\overline{8}$	0.400
В	0.196	0.400

.bluox

tions.

wing

.5 Å

wing

Table 2
Weissenberg photographs of Bi₂NbTiO₂.

ı	$I_{\mathbf{A}}$	IB	1001	I _{obs.} I ₁₁₁	I ₂₀₁
9	4.0	12		vvw	٧w
2	7.3	22	m	st	m+
2	2.3	5.3	₩	st	m
2 4 6 8	7.3	22	m	w	m
10	510	440	st	st	st
L	1.4	2.6	w		∇w
12	1.4	52	m+	vw	W
14	0.2	0.0	w	vw	
16 18	11	. 30	m+	w	∀ ₩
20	500	400	st	et	m+
22	0.1	0.4			
24	27	94	m	m	· m
26	0.5	2.0	w	m ·	m
28	14	31	m	m+	m+
30	490	350	m	m.+	·
	<u> </u>	<u> </u>			
1	,I _A	IB	1101	I ₂₁₁	
1	4.4	12	st .	m+ vw	1
3	5.8	17	m	vst	
5	520	450	vst	V50	1
1 3 5 7 9	2.6	6.3 35	m	m	
	11			l.	! !
11	0.8	1.4	w	w	!
13	9.0	27	vw	w	
15	510	420	st	w	'
17	0.6	0.3	-	1 _	į
19	20	70	w	W	Į į
21	0.0	0.5	w	W	•
23	12	31	, m	m m+	j .
25	500	380	m+]
27	0.0	3.2		l —	1
29	34	120	m	1	
31	1.4	4.4	m	<u> </u>	

From Table 2 it is seen that A and B account quite well for the observed

With A and B, Bi and Ti or Bi and Nb would occupy the same point position. This seemed a priori unlikely and if it was assumed that Bi₃NbTiO₉ and PbBi₂Nb₂O₉ were built up in the same way, arrangements A and B would imply that Pb, Bi and Nb were distributed over one point position, in PbBi₂Nb₂O₉. Therefore, although arrangements A and B cannot be excluded from intensity discussions alone, they seem very improbable and will not be dealt with in the following.

One half notes the

The following

4 (8 (8 (

In Tal

4 Bi i In case: 4 O₁ in

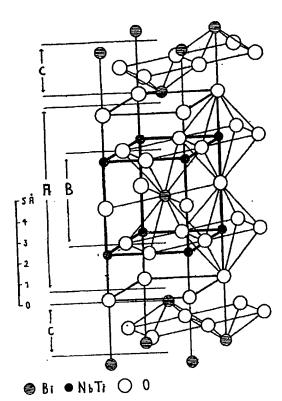


Figure 3.

One half of the pseudo-tetragonal unit cell of Bi₂NbTiO₃ (from $z\approx0.25$ to $z\approx0.75$). A denotes the perowskitic layer BiNbTiO₇, C Bi₂O₂ layers and B the unit cell of a hypothetical perowskite structure BiNb0.5Ti0.5O3.

Case C'₁

The following positions were assumed: 4 Bi in 000, 8 Bi in ± 00 0.396, 8 NbTi in ± 00 0.192. By the same arguments as used for PbBi₂Nb₂O₉ the following positions were arrived at:

8 O_3 in ± 00 0.268 4 O_1 in $0.0\frac{1}{2}$ 8 O_2 in ± 0.0 0.092 8 O_4 in $\frac{1}{2}\frac{1}{4}z$; $\frac{1}{4}\frac{1}{2}-z$ z=0.1648 O_5 in $\frac{1}{4}\frac{1}{4}z$; $\frac{1}{4}\frac{1}{2}-z$ z=-0.164.

pserved

3 point

 $\sqrt{\text{bTiO}_9}$ } would

ion, in

xcluded

not be

In Table 3 the intensities are calculated from these parameters.

Case C'₂

4 Bi in 000, 8 Bi in \pm 00 0.200 and 8 NbTi in \pm 00 0.412 were assumed. In case 2' (see PbBi₂Nb₂O₉) the parameters for the oxygen atoms would be $4 O_1$ in $00\frac{1}{2}$, $8 O_2$ in ± 00 0.324, $4 O_5$ in $\frac{1}{2}\frac{1}{4}\frac{1}{4}$,

z=0.0884 O_6 in $\frac{1}{4}\frac{1}{4}$, 8 O_4 in $\frac{1}{4}\frac{1}{2}$; $\frac{1}{4}\frac{1}{4}-z$ 8 O_3 in $\frac{1}{4}\frac{1}{2}$; $\frac{1}{4}\frac{1}{4}-z$ z = -0.088

Table 3 Weissenberg photographs of Bi₃NbTiO₉

	·	Weissenberg	d buomar	apus or a	<u> </u>		
	Zero	layer		i	First	layer	
100	I _{C'_1}	I _{obs.}	I _{C'}	211	$\mathbf{I_{C_i}}$	I _{obs.}	I _{0'}
4 6 8 10	13 0.5 48 310	m w. m st	36 10 16 330	1 3 5 7 9	2.6 35 290 19 27	m+ vw vst m	22 6.3 300 1.0
12 14 16 18 20 22 24 26 28	46 38 2.6 100 240 12 42 29	w m+ w m+ st m	59 29 48 240 0.5 140 42 35	11 13 15 17 19 21 23 25	3.6 52 270 6.8 45 14 110 200	w w w m m+	18 26 270 0.8 90 40 46 200
101	190 1 _{C1}	I _{obs.}	I _{C2}	111	I _{C'1}	I _{obs.}	I _{C'}
1 3 5 7 9 11 13 16 17 19 21 23 25 27 29 31	2.0 29 270 17 29 5.8 49 270 5.3 44 16 110 200 4.4 65	st m vst — m w vw st — w m m	17 5.3 300 1.2 56 15 28 270 0.6 92 38 46 200 1.2 110	2 4 6 8 10 12 14 16 18 20 22 24 26 28 30	34 2.9 6.8 62 360 14 29 10 64 250 21 66 32 130 150	vvw st st w st vw vw w st m m m+ m+	2.6 -41 69 22 310 1.0 76 40 16 210 0.0 92 61 27 200
201	I _{C'1}	I _{obs.}	I _{C'a}				
2 4 6 8 10 12 14 16 18 20 22 24 26 28	18 12 0.1 48 300 33 37 2.6 100 240 12 42 29 100	vw m+ m st ww w vw m+ m m m+	2.9 37 16 17 320 5.8 58 31 45 240 0.5 140 46 35				

In T from tl 202:204 fluence ັ_ຮີ້ 0.396 ຄາ discrepa to be certainly to be to Thus consider 2' seem With $D_{m}^{23}-m$ (000;

> With D47-I 4 (000;

> > Vah

Ic;

22

300

53 18

26

270

40

46

200

Ic,

41 69

22

310

1.0 76

40

16

210 0.0

92

61

27

200

2.6

0.8 90

6.3

1.0

ARKIV FÖR KEMI. Bd 1 nr 54

In Table 3 the intensities are calculated with these assumptions. It is seen from the Table that with C_1 the order of the reflections 101:103, 211:213, 102:204 and 107:109 are reversed. The same result was obtained if the influence of the oxygen atoms was neglected. If $z_{\rm Bi}$ and $z_{\rm NbTi}$ were varied around 1396 and 0.192 so as to give correct ratios for some of these reflections, large discrepancies occurred for other reflections. With C_2 the intensities turned out to be of the right order. There are however a few discrepancies. 0.020 is certainly stronger than 0.018 and 0.030>0.028, but the calculated ratios seem to be too large. On the whole the agreement is however good.

Thus if the X ray data for only one of PbBi₂Nb₂O₉ or Bi₃NbTiO₉ were considered, different atomic arrangements appeared to be possible, whereas only seems to explain the observed data both for PbBi₂Nb₂O₉ and Bi₃NbTiO₉.

With orthorhombic description the positions will be:

```
D_{2}^{23}-mmm
  (000; 0\frac{1}{2}\frac{1}{2}; \frac{1}{2}0\frac{1}{2}; \frac{1}{2}\frac{1}{2}0) +
                  4 \text{ Bi}_1 \text{ (Me}_1) \text{ in}
                                             4 (a) 000
                  8 \text{ Bi}_2 \text{ (Me}_2) \text{ in}
                                              8 (i) \pm 00 0.200 (0.202)
                  8 NbTi (Nb) in
                                              8 (i) \pm 00 0.412 (0.412)
                                              4 (b) 00 ½
                  4 \ O_1
                                       in
                  8 O<sub>2</sub>
                                              8 (i) 00 0.324 (0.324)
                                       in
                  80_3
                                       in 8 (f) $\frac{1}{4}\frac{1}{4}; $\frac{1}{4}\frac{1}{4}$
                                        in 16 (j) 112; 112; 112; 112; 112
                16 O_4
                                                  z = 0.088.
```

With pseudo-tetragonal description the positions will be:

```
\begin{array}{c} D_{eb}^{17}-I \ 4/mmm \\ (0\ 0\ 0; \ \frac{1}{2}\ \frac{1}{2}\ \frac{1}{2}) \ + \\ & 2 \ Bi_1 \quad (Me_1) \ in \ 2 \ (a) \ 0\ 0\ 0 \\ & 4 \ Bi_2 \quad (Me_2) \ in \ 4 \ (e) \ \pm \ 0\ 0 \ 0.200 \ (0.202) \\ & 4 \ NbTi \ (Nb) \ in \ 4 \ (e) \ \pm \ 0\ 0 \ 0.412 \ (0.412) \\ & 2 \ O_1 \qquad \qquad in \ 2 \ (b) \ 0\ 0\ \frac{1}{2} \\ & 4 \ O_2 \qquad \qquad in \ 4 \ (e) \ \pm \ 0\ 0 \ 0.324 \ (0.324) \\ & 4 \ O_3 \qquad \qquad in \ 4 \ (d) \ 0\ \frac{1}{2}\ \frac{1}{2}; \ \frac{1}{2}\ 0\ \frac{1}{4} \\ & ' \ 8 \ O_4 \qquad \qquad in \ 8 \ (g) \ \pm \ (0\ \frac{1}{2}z; \ \frac{1}{2}\ 0\ z) \ z = 0.088. \end{array}
```

Table 4

Values of the tolerance factor, t, for different compounds having the CaBi₂Nb₂O₉ structure.

Comp	t. 100						
Bi.NbTiO.							91
Bi TaTiO	•	•	•	•	:	. 1	91
CaBiaNbaO							91
SrBi ₂ Nb ₂ O ₂			•				99
SrBi ₂ Ta ₂ O ₉							99
BaBiaNbaO,							106
PbBiaNbaOs							101
NaBisNb4O1							91
KBisNbsO18			•				97

Table 5

Powder photographs of CaBi₂Nb₂O₉ and SrBi₂Nb₂O₉. Cr K radiation. Pseudo tetragonal indices.

	CaBi ₂ Nb	$_{2}O_{9}$		
hkl	I _{obs.}	I_{α}	Ι _β	· 1,
	-008.		0.8	0.01
006		8. 4 61	9.6	0.6
0 0 8	m	230	230	230
114+00 10	(m)		19	47
0012		0.5	46	56
00 14	A.M.	29 2.6	. 0.6	4.0
00 16	₩	100	34	13
00 18	W	. 100	0 -2	
101		1.2	0.5	2.9
101	et.	36	1.4	1.4
103	vst	200	200	200
105 107	w	21	0.3	7.8
109	vvw	18	32	43
10 11		7.0	0.2	0.5
	m+	79	19	4.4
$\begin{array}{c} \cdot & 10 & 13 \\ 20 & 10 + 10 & 15 \end{array}$	(st)	160	160	160
21 11+10 17	(w)	22	0.2	9.0
2111-1011	()			
112	_	26	0.04	4.8
0010+114	(m)	4.4	14	22
116	w	4.4	17	26
. 118	m	69	13	1.7
204+11 10	(st)	200	200	200
11 12		22	0.1	8.4
11 14	w	41	61	72
			0.1	4.4
202	W	27	0.1 13	20
1110+204	(st)_	3.6	0.04	1.4
206	W	3.2	9.0	0.5
215+208	(st)	59 220	220	220
10 15+20 10	(st)	1.4	15	41
2012	ν₩	1.2	20	
		۸1	2.3	6.3
211	W	0.1 38	2.0	1.0
2 1 3	₩ (~ \)	210	210	210
208+215	(st)	21	0.3	7.8
217	vvw	18	33	43
219	(w)	4.4	0.01	1.4
1017+21 11	(")			
	SrBi ₂ N	Љ ₂ О ₉		
006		3.2	0.1	0.2
008	vw	45	11	2.6
114+00 10	(m)	260	260	260
00 12	VW	0.2	16	35
00 14	m	42	· 68	64
00 16		0.3	1.4	4.4
00 18	w	83	35	18
00 20	st	150	160	160

Table 5 (co

βOC

One half tioned in determine 00 0.202. Ca, Sr, Ba KBi₅Nb₄O₁₁ do not diff valid for tl Ca, Sr, Ba

> a Only 1 β Rando:

· . • .	×	(cont.)
oldap.	υ	(cont.)

Pseudo-

.0

.8

.7 .4

.4

.0

.8

.4

1.2

I _a I ₃ I ₇ 0.0 2.0 4.0 24 2.0 0.1 230 240 230 12 0.01 3.6 28 42 49 2.3 0.01 0.8 0.1 190 200 200 10 13 0.01 4.0 10 88 110 120 10 20 26
24 2.0 0.1 230 240 230 - 12 0.01 3.6 28 42 49 - 2.3 0.01 0.8 - 61 20 8.4 0) 190 200 200 1) 13 0.01 4.0 - 88 110 120
7 24 2.0 0.1 230 240 230 - 12 0.01 3.6 7 28 42 49 - 2.3 0.01 0.8 61 20 8.4 0) 190 200 200 1) 13 0.01 4.0 10 88 110 120 - 16 0.3 1.7
230 240 230 12 0.01 3.6 28 42 49 2.3 0.01 0.8 61 20 8.4 0) 190 200 200 1) 13 0.01 4.0 10 88 110 120 16 0.3 1.7
12 0.01 3.6 y 28 42 49 2.3 0.01 0.8 61 20 8.4 1) 190 200 200 1) 13 0.01 4.0 1) 88 110 120
v 28 42 49 - 2.3 0.01 0.8 a 61 20 8.4 b) 190 200 200 c) 13 0.01 4.0 a 88 110 120
- 2.3 0.01 0.8 0 61 20 8.4 1) 190 200 200 1) 13 0.01 4.0 10 88 110 120 - 16 0.3 1.7
10 61 20 8.4 10 190 200 200 11 13 0.01 4.0 10 88 110 120 11 0.3 1.7
10 200 200 13 0.01 4.0 10 88 110 120 16 0.3 1.7
13 0.01 4.0 n 88 110 120 - 16 0.3 1.7
- 16 0.3 1.7
_ 16 0.3 1.7
- 10 o.c
_ 10 00 04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
52 14 4.4
w 22 940 230
st 230 240 3.6
- 13 74 81
₩ 00
- 0.1 10 2.5
m 40 10 2.6
17 0.4 1.4
9.0 19 24
0.6 0.6 2.
0.0
w) 250 980 950
19 29
W) 0.01 22 44
W 42
0.2 1.7 4.
_ 0.6 4.8 7.
w 26 26 0.
W 240 240
st 240
<u> </u>
$\frac{\text{vw}}{}$ $\frac{27}{1.2}$ $\frac{2.5}{0.4}$ $\frac{2.5}{2.5}$
m 09 ~*
(st) 190 190 190

One half of the pseudo-tetragonal unit cell is pictured in figure 3. As mentioned in the discussion on PbBi₂Nb₂O₉, it was impossible in this phase to determine how Pb and Bi are distributed over the point positions 000 and 000.202. It therefore seemed of interest to try to determine the positions of Ca, Sr, Ba and K in the compounds CaBi₂Nb₂O₉, SrBi₂Nb₂O₉, BaBi₂Nb₂O₉ and KBi₅Nb₄O₁₈. As the cell dimensions of the Pb, Ca, Sr, Ba and K compounds do not differ much it was assumed that the parameters of PbBi₂Nb₂O₉ are also valid for the other compounds. There were three extreme ways of distributing Ca, Sr, Ba and K over the positions 000 and 000.202:

a Only Bi in 00 202

β Random distribution

γ Only Bi in 000.

Table 6 a

Powder photographs of Bi₃NbTiO₃. Cr K radiation.

Orthorhombic indices.

		1					
hkl	$10^4 \sin^2 \theta_{\rm calc.}$	$10^4 \sin^2 \theta_{\rm obs.}$	l _{obs.}	hkl	10 ⁴ sin ² θ _{calo.}	$10^4 \sin^2 \theta_{\rm obs.}$	I _{obs.}
	0014	0909	m	. 02 14	5856)	2074	•
111	0914	1072	W+	20 14	5878)	5874	m
113	1080	1319	w+			5990	vw
008	1333	1413	vst	139	6128	6129	W+
115	1414 1774	1767	m+	319	6172	6175	w
020	1774	1790	m	_		6250	VVW .
200		2078	m	22 12	6569	6573	VVW
00 10	2083			00 18	6747	6747	777
204	2129	2131	w	13 11	6961	6961	w
3119	2136∫	2324	VVW	040	7097)		
	<u> </u>	<u> </u>		02 16	7105}	7097	m
026	2524	2530	m	20 16	7127	1	1 :
206	2546	2546	m	042	7180	H100	• '
119	2580	2586	m	400	7185	7182	l m
—	l —	2739	VVW	β240	7357	İ	,
028	3107	3129	W W	β 4 2 0	7420}	7388	w
208	. 3129∫	ŧ.		044	7430		
11 11	3413	3415	. w	2214	7652	7648	w
		3523	w	046	7847	7836	vw
220	3570	3576	st	406	7935)		
222	3653	3648	vw	13 13	7960	0005	!
11 13	3654∫	0020		31 13	8004	8005	w
02 10	3857	3860	st	331	8054		1
20 10	3879∫	2000		00 20	8330	8330	m
00 14	4082	4089	W	11 19	8411	1	i
135	4103	l.		048	8430	8409	m
	—	4236	vw	20 18	8543	0.770	
226	4320	4324	w	335	8554	8558	st
11 13	4412	4414	w_	240	8887	0000	
131	4462	4454	w	22 16	8901	8888	m
311	4506	4504	vw	420	8959	0000	1
311 15	4621	4623	W W	242	8970	8963	m
133	4628	3020		13 15	9127	9105	at
313	4672	4676	w	31 15	9171	9156	vst
322 10	4679		i	04 10	9180	9189	m
228	4903	4896	w	40 10	9268)	1	1
135	4962	4956	st	424	9292	9264	m
315	5006	5006	gt	426	9709		1
11 15		5581	st		9720	9712	W
22 10	l l	5652	st	339	8120)	1	

The intensities were calculated for these possibilities by calculations similar to those for $PbBi_2Nb_2O_9$, and compared with the observed ones. See Table 5. It was found that in no case did γ explain the observed intensities. For the Sr, Ba and K compounds the observed intensities did not permit any decision between α and β . For $CaBi_2Nb_2O_9$, however, only α seemed to give correct intensities. It was therefore concluded that the compounds discussed have the α arrangement.

Γ.		
3	hkl	10
The state of the s	101 103 008 105 110 00 10 114 β109 116 109 β200	
	00 12 118 10 11	
	200 11 10 00 14	
	10 13 211 208 215	
	10 15	

The struct
BiNbTiO₇²⁻ l
skite struct
view was s
was observe
would allow
t is calculat
between the
(see Table
to be stable

twas calcul

In the calo ionic radii we K⁺ 1.33, Nb⁵⁺ distributed ove

ARKIV FÖR KEMI. Bd 1 nr 54

Table 6 b

Powder photographs of PbBi₂Nb₂O₉. Cr K radiation.

Pseudo-tetragonal indices.

hkl	$10^4 \sin^2 \theta_{\rm calc.}$	10 ⁴ sin ² θ obs.	I _{obs.}	hkl	$10^4 \sin^8 heta_{ m calc.}$	$10^4 \sin^2 \theta_{\rm obs.}$	I _{obs.}
101	0889 1050	0892 1052	VW VVW	11 14 219 00 18	5682 5974 6520	5699 5990 6529	m m
008 105 110	1288 1372 1738	1285 1371 1753	vst m m	00 20 10 17 11 16	6663 \ 6685 \ 6889 \	6664	vvw .
00 10 114 β109	2012 2060 2069	2019 2068	VVW.	β305 220	6903 } 6950	6924 6934 6976	m m m
116 109 β200	2462 2499 2877)	2469 2499 2881	m m	20 14 21 13 301	7419 7744 7839	7435 7749 7846	m m vw
00 12 118 10 11	2898 <i>}</i> 3026 330 4	3028 3300	w vvw	00 20 10 19 228	8049 8133 8238)	8052 81 3 1	m m+
200 11 10 00 14	3475 -3750 3944	3475 3755 3946	st st w+	11 18 305	8258) 8332	8268 8339 8673	m+ m+
10 13 211 208	4269 4364 4763	4270 4355 4770	W ⁺ . VVW	310 21 15	8688 8872	8690) 8874	m t
215 10 15 20 10	4847 5397 5487	4850 5416 5493	st st st	22 10 314 309	8962 9010 9449	8980 9450	vvw m

The structure of $\mathrm{Bi_3NbTiO_9}$ is thus built up of $\mathrm{Bi_2O_2^{2+}}$ layers between which $\mathrm{BiNbTiO_7^{2-}}$ layers are inserted. The structure may be looked upon as a perowskite structure where perowskite layers are separated by $\mathrm{Bi_2O_2^{3+}}$ layers. This view was supported by the fact that in all cases where the above structure was observed the radii of the ions in the layers lying between the $\mathrm{Bi_2O_2^{3+}}$ layers would allow for the formation of a perowskite structure. If the tolerance factor t is calculated from the ionic radii of the elements constituting the layers between the $\mathrm{Bi_2O_2^{2+}}$ layers, it is found to lie between the limits 0.9 and 1.1 (see Table 4), the same limits within which perowskite structures are found to be stable.

t was calculated from the formula: 1.06 ($R_A + R_O$) = 0.95 t $\sqrt{2}$ ($R_B + R_O$). (See (3).) A = (K + Bi)/2 Ca, Sr, Ba etc. B = (Nb + Ti)/2 (Ta + Ti)/2 Nb. Ta.

In the calculations case α was assumed. For calculating t the following values for the ionic radii were used: Bi^{3+} 1.00, Ba^{2+} 1.39, Sr^{2+} 1.20, Ca^{2+} 1.02, Pb^{2+} 1.26, Na^+ 0.97, K^+ 1.33, Nb^{5+} 0.69, Ta^{5+} 0.69, Ti^{4+} 0.66 and O^{2-} 1.36. If, for instance, 1 K + 1 Bi are distributed over one 2-fold position the radius of (K, Bi) was taken as $(r_{\mathrm{K}} + r_{\mathrm{Bi}})/2$.

m

νν ννν ννν

m

m

vw

W

m m

m

m

st

vst.

m

m

imilar

ble 5.

or the

cision

:orrect

re the

The structure proposed for CaBi2Nb2O9 reminds one of the structure of beyerite CaBi₂O₂(CO₃)₂ described by Lagercrantz and Sillen (4). The unit cell of beyerite is body-centered tetragonal with a = 3.767 and c = 21.690 Å. The positions of the Ca and the Bi atoms in beyerite are Ca 000 and Bi ±00 0.19 (space group D_{4h}^{17}) as compared with a = 3.860 c = 24.87, Ca in 000 and Bi in ± 00 0.20 for CaBi₂Nb₂O₉.

The "rotating" CO3 groups in beyerite correspond to octahedral sheets Nb₄O₇ in CaBi₂Nb₂O₉. Following the notations given by LAGERCRANTZ and SILLEN (4) the structure described above might also be denoted by X11.

SUMMARY

A series of tetragonal or pseudo-tetragonal phases of general composition (Bi, Me)₆R₄O₁₈ have been investigated.

Me: Na, K, Ca, Sr, Ba, Pb.

R: Nb, Ta, Ti.

The positions of the Me and R atoms were determined from the observed intensities and the positions of the O atoms were deduced from space considerations.

The following structure is proposed:

 $D_{2h}^{23}-F$ mmm

 $(000; 0\frac{1}{2}\frac{1}{2}; \frac{1}{2}0\frac{1}{2}; \frac{1}{2}\frac{1}{2}0) +$

in 4 (a) 000 4 Bi

 $8 (i) \pm 00 0.200$ in 8 Bi

8 NbTi in 8 (i) ± 00 0.412

4 (b) 00½ in 40

in 8 (i) $\pm 00 \ 0.324$ 80

111; 111 in 8(f)8 0

in 16 (j) $\frac{1}{4}$ $\frac{1}{4}z$; $\frac{1}{4}$ $\frac{1}{4}z$; $\frac{1}{4}$ $\frac{3}{4}z$; $\frac{1}{4}$ $\frac{3}{4}z$ z = 0.088. 16 O

From intensity calculations it was found that Ca in CaBi2Nb2O9 and Sr, Ba and K in the corresponding compounds are probably situated in the position 000. The proposed structure is built up of Bi₂O₂²⁺ layers alternating with single perowskite layers. The resemblance to the structure of beyerite is pointed out.

I wish to thank Professor L. G. Sillén for valuable discussions concerning this work.

Stockholms Högskola, Institute of Inorganic and Physical Chemistry, June 1949.

REFERENCES. 1. Internationale Tabellen zur Bestimmung von Kristellstrukturen, Berlin 1935. — 2. Wells, A. F. Z. Krist. 96, 451, 1937. — 3. Stillwell, Ch. Crystal Chemistry, New York and London, 1938, p. 272. — 4. Lagercrantz, A. and Sillén, L. G. Arkiv Kemi etc. 25, N:o 20, 1948.

Tryckt den 31 december 1949

Uppsala 1949. Almqvist & Wiksells Boktryckeri AB

Ir jn t forn

has

alco.

with little wate tinu M knor not Ano 80lV is TE wate (Fig inne In сарғ

> M met. bens Т

also witł are As

thar qua: be

per

48

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☑ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
✓ FADED TEXT OR DRAWING
☑ BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☑ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☑ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.